The incident wave is \(E_0 \sin(ke-\omega t) \). At \(t=0 \), it is like

\[E_0 \sin(ke) \]

The reflected wave is \(E_0 \sin(ke+\omega t) \). At \(t=0 \), it looks the same as the wave above, however, the part at \(z>0 \) is moving left, so it cancels the part of the incident wave moving right from \(z<0 \).

The sum is

\[E_{tot} = E_0 [\sin(ke-\omega t) + \sin(ke+\omega t)] \]

\[= 2E_0 \cos(ke) \cos(\omega t) \]

as expected, a node at \(0 \).

The magnetic field has to be oriented so that \(E \times B \) is \(\hat{z} \). Therefore

\[Bi = B_0 \sin(ke-\omega t) \hat{j} \]

\[Br = -B_0 \sin(ke+\omega t) \hat{j} \]

\[B_{tot} = B_0 [\sin(ke-\omega t) - \sin(ke+\omega t)] \hat{j} \]

\[= -2B_0 \cos(ke) \sin(\omega t) \]

as expected an antinode at \(0 \).

The rest of the problem follows.

I drew it upside down on the board and this lead to all the confusion